CoAS_V1IS6_03

Mini-review
Prospects of using Bacillus species as Probiotic in the Aquaculture sector
Arya Singh, Vivek Chauhan*, Aimen Firdous, Tandel Lata
Abstract
The utilization of probiotics in aquaculture has garnered significant attention as a potential microbial strategy for enhancing the health and overall well-being of various aquatic species reared in aquaculture settings. Among the diverse array of microbial options available, Bacillus probiotics have emerged as a particularly advantageous choice. This predilection is due to their special qualities, which include their ability to produce antimicrobial chemicals, the fact that they may be mixed with fish feed without causing any negative effects or toxicity, and the fact that they can create spores, which allows them to survive in harsh environments. Consequently, Bacillus species have gained prominence as the foremost probiotic option for augmenting feed consumption, mitigating stress responses, bolstering immune defenses, enhancing disease resistance, maintaining tissue integrity, and improving water quality. This mini-review retriving mainly about characteristics, mechanisms and importance of Bacillus probiotic in aquaculture industry.
Keywords
Probiotics, aquaculture, antimicrobial compounds, Bacillus sp., disease resistance
References
Abriouel, H., Franz, C. M., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS microbiology reviews, 35(1), 201-232.
Amoa‐Awua, W. K. A., & Jakobsen, M. (1995). The role of Bacillus species in the fermentation of cassava. Journal of Applied Bacteriology, 79(3), 250-256.
Atrih, A., & Foster, S. J. (2002). Bacterial endospores the ultimate survivors. International Dairy Journal, 12(2-3), 217-223.
Balcázar, J. L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., & Múzquiz, J. L. (2006). The role of probiotics in aquaculture. Veterinary microbiology, 114(3-4), 173-186.
Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144.
Cai, J., & Leung, P. (2017). Short-term projection of global fish demand and supply gaps. FAO Fisheries and Aquaculture technical paper, (607).
Cutting, S. M. (2011). Bacillus probiotics. Food microbiology, 28(2), 214-220.
Dawood, M. A., & Koshio, S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture, 454, 243-251.
Di Giulio, R. T., Habig, C., & Gallagher, E. P. (1993). Effects of Black Rock Harbor sediments on indices of biotransformation, oxidative stress, and DNA integrity in channel catfish. Aquatic toxicology, 26(1-2), 1- 22.
Dong, Y. H., Zhang, X. F., Xu, J. L., & Zhang, L. H. (2004). Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Applied and environmental microbiology, 70(2), 954-960.
Elisashvili, V., Kachlishvili, E., & Chikindas, M. L. (2019). Recent advances in the physiology of spore formation for Bacillus probiotic production. Probiotics and antimicrobial proteins, 11, 731-747.
Farzanfar, A. (2006). The use of probiotics in shrimp aquaculture. FEMS Immunology & Medical Microbiology, 48(2), 149-158.
Ghosh, P. K., Maiti, T. K., Pramanik, K., Ghosh, S. K., Mitra, S., & De, T. K. (2018). The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere, 211, 407- 419.
Han, B., Long, W. Q., He, J. Y., Liu, Y. J., Si, Y. Q., & Tian, L. X. (2015). Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish & shellfish immunology, 46(2), 225-231.
Hindu, S. V., Thanigaivel, S., Vijayakumar, S., Chandrasekaran, N., Mukherjee, A., & Thomas, J. (2018). Effect of microencapsulated probiotic Bacillus vireti 01-polysaccharide extract of Gracilaria folifera with alginate-chitosan on immunity, antioxidant activity and disease resistance of Macrobrachium rosenbergii against Aeromonas hydrophila infection. Fish & shellfish immunology, 73, 112-120.
Ige, B. A. (2013). Probiotics use in intensive fish farming. Afr. J. Microbiol. Res, 7(22), 2701-2711.
Irianto, A., & Austin, B. (2002). Probiotics in aquaculture. Journal of fish diseases, 25(11), 633-642.
Jahangiri, L., & Esteban, M. Á. (2018). Administration of probiotics in the water in finfish aquaculture systems: a review. Fishes, 3(3), 33.
LaPatra, S. E., Fehringer, T. R., & Cain, K. D. (2014). A probiotic Enterobacter sp. provides significant protection against Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) after injection by two different routes. Aquaculture, 433, 361-366.
Lazado, C.C., Caipang, C.M.A. and Estante, E.G. (2015). Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol., 45: 2–12
Li, W. F., Deng, B., Cui, Z. W., Fu, L. Q., Chen, N. N., Zhou, X. X., ... & Yu, D. Y. (2012). Several indicators of immunity and antioxidant activities improved in grass carp given a diet containing Bacillus additive. J. Anim. Vet. Adv, 11(14), 2392-7.
Liu, K.F., Chiu, C.H., Shiu, Y.L., Cheng, W., and Liu, C.H. (2010). Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish Shellfish Immunol., 28(5–6): 837– 844.
Mohapatra, S., Chakraborty, T., Kumar, V., DeBoeck, G., & Mohanta, K. N. (2013). Aquaculture and stress management: a review of probiotic intervention. Journal of animal physiology and animal nutrition, 97(3), 405-430.
Mohapatra, S., Chakraborty, T., Kumar, V., DeBoeck, G., & Mohanta, K. N. (2013). Aquaculture and stress management: a review of probiotic intervention. Journal of animal physiology and animal nutrition, 97(3), 405-430.
Nayak, S.K. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29(1): 2–14.
Piewngam, P., Zheng, Y., Nguyen, T. H., Dickey, S. W., Joo, H. S., Villaruz, A. E., ... & Otto, M. (2018). Pathogen elimination by probiotic Bacillus via signalling interference. Nature, 562(7728), 532- 537.
Reda, R. M., & Selim, K. M. (2015). Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquaculture International, 23, 203-217.
Ringø, E., Myklebust, R., Mayhew, T. M., & Olsen, R. E. (2007). Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture, 268(1-4), 251-264.
Selim, K. M., & Reda, R. M. (2015). Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish & shellfish immunology, 44(2), 496-503.
Senapin, S., Shyam, K. U., Meemetta, W., Rattanarojpong, T., & Dong, H. T. (2018). Inapparent infection cases of tilapia lake virus (TiLV) in farmed tilapia. Aquaculture, 487, 51-55.
Seong, C. N., Kang, J. W., Lee, J. H., Seo, S. Y., Woo, J. J., Park, C., ... & Kim, M. S. (2018). Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea. Journal of Microbiology, 56, 1- 10.
Shang, Y. C. (1986). Research on aquaculture economics: a review. Aquacultural Engineering, 5(2-4), 103-108.
Skjermo, J., & Vadstein, O. (1999). Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture, 177(1-4), 333- 343. Solovyev, M. M., Kashinskaya, E. N., Izvekova, G. I., Gisbert, E., & Glupov, V. V. (2014). Feeding habits and ontogenic changes in digestive enzyme patterns in five freshwater teleosts. Journal of Fish Biology, 85(5), 1395-1412.
Tan, I. S., & Ramamurthi, K. S. (2014). Spore formation in B acillus subtilis. Environmental microbiology reports, 6(3), 212-225.
Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology reviews, 64(4), 655- 671. Wee, W. C., Mok, C. H., Romano, N., Ebrahimi, M., & Natrah, I. (2018). Dietary supplementation use of Bacillus cereus as quorum sensing degrader and their effects on growth performance and response of Malaysian giant river prawn Macrobrachium rosenbergii juvenile towards Aeromonas hydrophila. Aquaculture Nutrition, 24(6), 1804-1812.
Yi, Y., Zhang, Z., Zhao, F., Liu, H., Yu, L., Zha, J., & Wang, G. (2018). Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish & shellfish immunology, 78, 322-330.
Zou, J., Jiang, H., Cheng, H., Fang, J., & Huang, G. (2018). Strategies for screening, purification and characterization of bacteriocins. International journal of biological macromolecules, 117, 781- 789.
  • Published online
  • 27th November, 2023
 
How to Cite the Article
Singh, A., Chauhan, V., Firdous, A. and Lata, T. 2023. Prospects of Using Bacillus Species as a Prospective Probiotic in the Aquaculture Sector. Chronicle of Aquatic Science 1(6): 39-47.
 
Copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. 
 

CoAS_V1IS6_03

File Action
CoAS_V1IS6_03 Download